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Hydroxide ligands are ubiquitous in aqueous chemistry and 
are present on most oxide surfaces. They are related to oxo-
hydride species through the interconversion in equation 1, formally 
a 1,2-hydrogen migration or an a-elimination/insertion reaction. 

O 

L n M-OH = = LmM—H (I) 

This is one of the simplest reactions of a metal-oxo group and 
is of potential importance because hydroxide and oxo-hydride 
species should have quite different structures and reactivity. Only 
four types of oxo-hydride compounds have been synthesized to 
date: Re(O)H(RC=CR)2 (R = Me, Et (2), Ph),4 Cp*2Ta(0)H 
(Cp* = C5Me5),

5 [Re(0)HX(Cyttp)]+ (X = H, F; Cyttp = 
[Cy2P(CH2)3]2PPh),° and (HBpZ3)Re(O)(H)Cl (HBpz3 = hy-
dridotris(l-pyrazolyl)borate).7 The formation of the tantalum 
complex was suggested to involve a reaction similar to that shown 
in eq. 1.' This report describes the synthesis and characterization 
of the rhenium(I) tris(acetylene) hydroxide complex Re(OH)-
(EtC=CEt)3 (1) and a mechanistic study of its rearrangement 
to the oxo-hydride complex Re(O)H(EtC=CEt)2 (2). Remark­
ably, rearrangement occurs by initial hydrogen migration, not 
via initial alkyne loss from the 18-electron8 hydroxide complex. 

The hydroxide complex 1 is formed upon addition of solid 
KOH to a benzene solution of the aquotris(acetylene) complex 
[Re(OH2)(EtC=CEt)3]OTf, which in turn is formed from water 
and Re(OTO(EtC=CEt)3 (OTf = triflate, O3SCF3).

9 Yields 
are quantitative by NMR, but the high solubility and the instability 
of 1 reduce the isolated yield to 35% after recrystallization from 
pentane. The X-ray crystal structure of I10 (Figure 1) is quite 
similar to those of other tris(acetylene) compounds such as 
W(CO)(PhC=CPh)3

11 and Re(OSiMe3)(EtC=CEt)3,
9 with the 

bond lengths and angles in 1 nearly identical to those of the latter 
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Figure 1. Pluto drawing of the X-ray crystal structure of Re(OH)-
(EtO=CEt)3 (1). Selected bond lengths (A) and angles (deg): Re-O 
2.124(16), Re-C3 2.057(16), Re-C4 2.006(16), Re-C9,1.955(21), Re-
ClO 1.983(30), 0-Re-C3 125.6(5), 0-Re-C4 88.1(5), C3-Re-C3A 
92.6(9), C4-Re-C4A 119.7(11). 

complex. The spectroscopic data for I12 are consistent with its 
solid-state structure. A sharp O-H stretch is observed at 3630 
cm-1 in a Nujol mull of 1, consistent with the absence of hydrogen 
bonding in the crystal (VOD. 2677, calcd, 2633). A band at the 
same frequency is observed in benzene solution, indicating the 
absence of hydrogen bonding in solution as well. NMR spectra 
of 1 at -30 0C show separate resonances for the ethyl groups 
proximal and distal to the hydroxide ligand. 1H NMR spectra 
at 27 0C, however, show a single methyl triplet and a broad peak 
for the methylene hydrogens, indicating that the 3-hexyne ligands 
are fluxional, with a barrier to rotation of 14.0 ± 0.2 kcal/mol. 
The analogous methoxide complex Re(OMe)(EtC=CEt)3 (3)9 

shows a similar coalescence of the ethyl signals at 50 0C (A<7* 
= 16 ± 1 kcal/mol). 

Benzene solutions of 1 spontaneously rearrange to equimolar 
amounts of the known4* oxo-hydride complex 2 and free 3-hexyne 
over 5 days at ambient temperatures (Scheme I). The growth 
of the hydride peak of 2 in the 1H NMR is found to follow first-
order kinetics, with kobs = (5.6 ± 1.2) X 10-° S"1 at 294 ± 1 K, 
independent of the initial concentration of 1 over a factor of 8. 
An Eyring plot of five rate constants determined at temperatures 
between 294 and 327 K yields AH* = 17 ± 1 kcal/mol and AS* 
= -25 ± 5 eu. The deuteroxide complex Re(OD)(EtC=CEt)3 
(1-d) rearranges to the oxo-deuteride 2-d more slowly, with a 
kinetic isotope effect /CH/&D = 5 ± 1. The presence of 1 M 
3-hexyne in the benzene solution of 1 does not affect the rate of 
rearrangement within experimental error. Likewise, addition of 
1 M 2-butyne does not appear to affect the half-life for 
rearrangement. Complex 2 is still the predominant product in 
the presence of 2-butyne, as only ca. 10% of the alkyne ligands 
in the oxo-hydride products have exchanged with 2-butyne to 
give Re(O)H(MeC=CMe)(EtC=CEt) and Re(O)H(MeC= 
CMe)2. Since 2 does not exchange with 2-butyne under these 
conditions, the formation of butyne-containing products most 
likely results from ligand exchange in 1 prior to rearrangement.13 

The methoxide derivative 3 undergoes exchange with added 
2-butyne with a half-life of only a few hours at ambient 
temperatures, and kinetic studies indicate a dissociative mech­
anism.9 The methoxide complex thus undergoes ligand exchange 
much more rapidly than 1. 

(12) 1H NMR (C6D6, 300 K): S 1.10 (t, 7 Hz, 18 H, CZJ3CH2C= 
CCH'2Ctf'3); 2.53 (br, 1 H, ReOff); 3.1 (br, 12 H, CH3C^2C=CCW2-
CH'3). '3C(1H)NMR(C7D8^OK): 514.2,14.7(CH3CH2C=CCH2CH3); 
19.8,29.5 (CH3CH2C=CCH2CH3); 167.6,179.0 (CHjCH2C=CCH2CH3). 
MS: m/z 368/366 [M - acetylene]+ (100). IR (Nujol): 3630 s, HOH); 
1748,1731 w,HC=C); 1304,1253,1152,1064,944,822,722. Anal. Calcd 
for C,8H3iORe: C, 48.00; H, 6.89. Found: C, 47.57; H, 6.81. 

(13) Ligand exchange could also occur in an intermediate on the pathway 
to 2, but such a pathway is hard to imagine given the primary isotope effect 
and the absence of ligand inhibition. 
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Scheme I. Synthesis and Rearrangement of 
Re(OH)(EtC=CEt)3 (1) 
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The kinetic and mechanistic data rule out the standard 
organometalhc mechanism of initial ligand loss and rearrangement 
occurring in the coordinatively unsaturated rhenium(I) bis-
(acetylene) hydroxide intermediate, [Re(OH)(EtC=CEt)2] (eq 
2). Initial ligand loss (&i) cannot be rate limiting, because a 

Re(OH)(EtC=CEt)3 

1 

[Re(OH)(EtOCEt)2I 

EtCsCEt 

*2 

Re(O)H(EtC=CEt)2 

2 

(2) 

primary kinetic isotope effect is observed (ka/ko = 5). Similarly, 
preequilibrium loss of acetylene is inconsistent with a lack of 
ligand inhibition and inconsistent with rearrangement being faster 
than ligand exchange with added 2-butyne. It is also very unlikely 
that rearrangement occurs by deprotonation to the oxo anion 
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Protonation of 4 gives 2. 

(15) The primary isotope effect rules out preequilibrium hydrogen migration 
followed by rate-limiting ligand loss (the equilibrium isotope effect for hydrogen 
migration is estimated to be KH/KD - 2.4 based on stretching frequencies in 
1 and 2). 
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[Re(O)(EtC=CEt)2]- (4),14 catalyzed by trace base. Depro­
tonation of 1 gives 4 but not cleanly, and the rate of rearrangement 
is reproducible and unaffected by the presence of p-iodotoluene, 
which reacts rapidly with 4.14 

We propose that rearrangement takes place intramolecularly 
in the coordinatively saturated tris(acetylene) species 1, so that 
fcobs corresponds directly to the rate of rearrangement (k& in 
Scheme I). Hydrogen migration must take place either syn­
chronously with or prior to the loss of ligand.15 The small AH* 
of 17 kcal/mol is consistent with Re-H bond formation accom­
panying O-H bond cleavage, and the negative AS* (-25 eu) 
suggests a transition state that is more ordered than the ground 
state. The small amount of 2-butyne exchange observed during 
the rearrangement likely occurs via 3-hexyne dissociation from 
1 (ki,k.i in eq 2), by analogy with the reactivity of the methoxide 
3. Thus the unsaturated intermediate [Re(OH)(EtCsCEt)2] 
appears to be accessible, but—remarkably—it is not on the 
pathway to rearrangement. 

Conversion of a hydroxide to an oxo-hydride is a facile process 
in this system. In contrast, the analogous methoxide, phenoxide, 
and acetate complexes do not readily rearrange to the known 
oxo-methyl, -phenyl, and -acyl complexes.' Hydrogen appears 
to have a much higher migratory aptitude16 than other groups, 
as has been found in the related tantalum migrations511 and in 
other organometalhc rearrangements.17 We are currently ex­
ploring this rearrangement with other organic groups and with 
amide and thiolate ligands in place of alkoxide or hydroxide. 
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